

Battery Management Systems

battery made simple

www.emusbms.com

Current Sensor – Bus Bar Type (CS013A)

INTRODUCTION

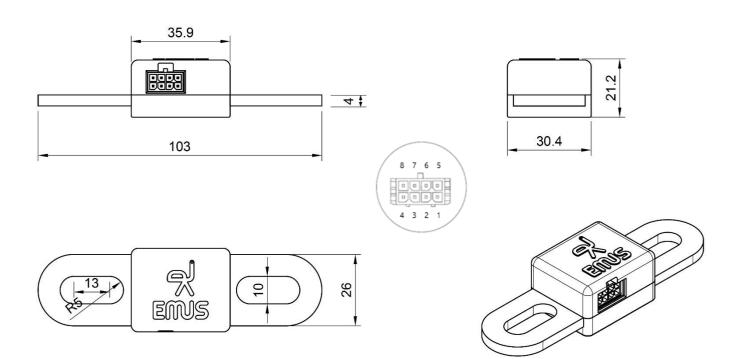
The Bus Bar type of EMUS G1 Dual Range Current Sensor is designed specifically for use in battery packs that consists of prismatic form factor cells. It doubles as an interconnecting bus bar, and due to the galvanic isolation between the sensor and the conducting part, it can be installed anywhere in the battery pack between two adjacent, series-connected cells.

APPLICATIONS

- High power batteries requiring high current draw
- Specifically designed to be used in EMUS battery management system.
- Due to sensitivity to surrounding magnetic environment recommended to calibrate in system.
- For use with EMUS current sensor cables.

FEATURES

- Two separate measurement channels with different sensitivity, which allows to accurately measure small currents without sacrificing the range of measurable values
- Designed Current measurement range is ±1000 A, accuracy reaches 0.5 %
- Hall-effect current measurement method which provides the characteristic galvanic isolation between the sensor and the conductive part
- Shielded sensor that reduces the influence of the surrounding magnetic field


battery made simple

www.emusbms.com

DEFAULT POSTITIVE/NEGATIVE CURRENTS DIRECTIONS

MECHANICAL INFORMATION

battery made simple

www.emusbms.com

Pin No.	Assignment	Mating Housing	Terminal
1	CHANNEL 1		
2	CHANNEL 3		
3	GND		
4	N.C		43030-0003 (recommended crimp tool
5	CHANNEL 2		Molex Hand Crimp Tool P/N: 638190000)
6	N.C		
7	+5V		
8	N.C		

ELECTRICAL CHARACTERISTICS

ltem	Conditions		Value
Nersing! Compart you go	Tested up to		±350A
Nominal Current range	Hardware ready (to be tested)		±500A
De als aurorant manage	Tested up to		±350A
Peak current range	Hardware ready (to be tested)		±1000A
Accuracy	<350A		±0.5%
Noise	<80A		±55mA
Noise	>80A		±500mA
Resolution	With G1 CU021,	<80A	0.1A
Resolution	FW 2.7 (10bit ADC)	>80A	0.3A
Basis Isolation DC Voltage			1kV
Supply voltage			5.0 VDC
Current consumption	At typical supply voltage		25 mA
Conductor resistance			20 μ0hm

OTHER SPECIFICATIONS

Item	Value
Operating temperature	-40 to +85 °C
IP rating	IP40
Weight	98 g

Battery Management Systems

battery made simple

www.emusbms.com

	 Open EMUS Control Panel (from version 2.7);
	2. Check for correct Sensor Type;
	3. To Calibrate L value:
	4. Run constant current from 30 up to 70A;
Sensor calibration procedure	 Make sure you connect current measurement device to measure actual value;
	 Press Calibrate L value, enter momentary current value from measurement device;
	 Make same process for H Value, only run current of more than 130A.
Default calibration values	H: 22500 L: 2340